152 research outputs found

    TrustShadow: Secure Execution of Unmodified Applications with ARM TrustZone

    Full text link
    The rapid evolution of Internet-of-Things (IoT) technologies has led to an emerging need to make it smarter. A variety of applications now run simultaneously on an ARM-based processor. For example, devices on the edge of the Internet are provided with higher horsepower to be entrusted with storing, processing and analyzing data collected from IoT devices. This significantly improves efficiency and reduces the amount of data that needs to be transported to the cloud for data processing, analysis and storage. However, commodity OSes are prone to compromise. Once they are exploited, attackers can access the data on these devices. Since the data stored and processed on the devices can be sensitive, left untackled, this is particularly disconcerting. In this paper, we propose a new system, TrustShadow that shields legacy applications from untrusted OSes. TrustShadow takes advantage of ARM TrustZone technology and partitions resources into the secure and normal worlds. In the secure world, TrustShadow constructs a trusted execution environment for security-critical applications. This trusted environment is maintained by a lightweight runtime system that coordinates the communication between applications and the ordinary OS running in the normal world. The runtime system does not provide system services itself. Rather, it forwards requests for system services to the ordinary OS, and verifies the correctness of the responses. To demonstrate the efficiency of this design, we prototyped TrustShadow on a real chip board with ARM TrustZone support, and evaluated its performance using both microbenchmarks and real-world applications. We showed TrustShadow introduces only negligible overhead to real-world applications.Comment: MobiSys 201

    Relativistic Coulomb Sum Rules for (e,e)(e,e^\prime)

    Full text link
    A Coulomb sum rule is derived for the response of nuclei to (e,e)(e,e^\prime) scattering with large three-momentum transfers. Unlike the nonrelativistic formulation, the relativistic Coulomb sum is restricted to spacelike four-momenta for the most direct connection with experiments; an immediate consequence is that excitations involving antinucleons, e.g., NNˉN{\bar N} pair production, are approximately eliminated from the sum rule. Relativistic recoil and Fermi motion of target nucleons are correctly incorporated. The sum rule decomposes into one- and two-body parts, with correlation information in the second. The one-body part requires information on the nucleon momentum distribution function, which is incorporated by a moment expansion method. The sum rule given through the second moment (RCSR-II) is tested in the Fermi gas model, and is shown to be sufficiently accurate for applications to data.Comment: 32 pages (LaTeX), 4 postscript figures available from the author

    Transmission Properties of the oscillating delta-function potential

    Full text link
    We derive an exact expression for the transmission amplitude of a particle moving through a harmonically driven delta-function potential by using the method of continued-fractions within the framework of Floquet theory. We prove that the transmission through this potential as a function of the incident energy presents at most two real zeros, that its poles occur at energies nω+εn\hbar\omega+\varepsilon^* (0<Re(ε)<ω0<Re(\varepsilon^*)<\hbar\omega), and that the poles and zeros in the transmission amplitude come in pairs with the distance between the zeros and the poles (and their residue) decreasing with increasing energy of the incident particle. We also show the existence of non-resonant "bands" in the transmission amplitude as a function of the strength of the potential and the driving frequency.Comment: 21 pages, 12 figures, 1 tabl

    Neutron charge radius and the Dirac equation

    Full text link
    We consider the Dirac equation for a finite-size neutron in an external electric field. We explicitly incorporate Dirac-Pauli form factors into the Dirac equation. After a non-relativistic reduction, the Darwin-Foldy term is cancelled by a contribution from the Dirac form factor, so that the only coefficient of the external field charge density is e/6rEn2e/6 r^2_{En}, i. e. the root mean square radius associated with the electric Sachs form factor . Our result is similar to a recent result of Isgur, and reconciles two apparently conflicting viewpoints about the use of the Dirac equation for the description of nucleons.Comment: 7 pages, no figures, to appear in Physical Review

    Ground state correlations and mean-field in 16^{16}O: Part II

    Full text link
    We continue the investigations of the 16^{16}O ground state using the coupled-cluster expansion [exp(S)\exp({\bf S})] method with realistic nuclear interaction. In this stage of the project, we take into account the three nucleon interaction, and examine in some detail the definition of the internal Hamiltonian, thus trying to correct for the center-of-mass motion. We show that this may result in a better separation of the internal and center-of-mass degrees of freedom in the many-body nuclear wave function. The resulting ground state wave function is used to calculate the "theoretical" charge form factor and charge density. Using the "theoretical" charge density, we generate the charge form factor in the DWBA picture, which is then compared with the available experimental data. The longitudinal response function in inclusive electron scattering for 16^{16}O is also computed.Comment: 9 pages, 7 figure

    Microscopic calculation of the inclusive electron scattering structure function in O-16

    Full text link
    We calculate the charge form factor and the longitudinal structure function for 16^{16}O and compare with the available experimental data, up to a momentum transfer of 4 fm1^{-1}. The ground state correlations are generated using the coupled cluster [exp(S}] method, together with the realistic v-18 NN interaction and the Urbana IX three-nucleon interaction. Center-of-mass corrections are dealt with by adding a center-of-mass Hamiltonian to the usual internal Hamiltonian, and by means of a many-body expansion for the computation of the observables measured in the center-of-mass system

    The Coulomb Sum and Proton-Proton Correlations in Few-Body Nuclei

    Full text link
    In simple models of the nuclear charge operator, measurements of the Coulomb sum and the charge form factor of a nucleus directly determine the proton-proton correlations. We examine experimental results obtained for few-body nuclei at Bates and Saclay using models of the charge operator that include both one- and two-body terms. Previous analyses using one-body terms only have failed to reproduce experimental results. However, we find that the same operators which have been used to successfully describe the charge form factors also produce substantial agreement with measurements of the Coulomb sum.Comment: 11 pages, Revtex version 3.0 with 3 Postscript figures appended, ANL preprint PHY-7473-TH-9

    Knocking back invasions: variable resistance and resilience to multiple cold spells in native vs. nonnative fishes

    Get PDF
    Extreme climate events can interact synergistically with invasions to dramatically alter ecosystem structure, function, and services. Yet, the effects of extreme climate events on species invasions remain unresolved. Extreme climate events may increase resources and decrease biotic resistance by causing physiological stress and/or mortality of native taxa, resulting in invasion opportunities for nonnative species. Alternatively, extreme climate events may regulate nonnative populations, preventing them from achieving dominance. We examined whether a sequence of three cold spells had a negative or positive effect on fish invasions in the coastal Everglades. We compared resistance (initial effects) and resilience (rate of recovery) to the cold spells between native fishes and the dominant nonnative invader, the Mayan cichlid, across eight populations expanding two mangroves drainages in the southern Everglades. We tracked native fish and nonnative Mayan cichlid populations for 10 yr including 3 yr pre- and 4 yr post-cold spells. In both drainages, native fishes were more resistant to the cold spells than the nonnative species. While native fishes experienced declines at only one site, nonnative Mayan numbers were reduced by 90–100% across six sites where they were abundant pre-disturbances. Four years after the last cold spell, we saw limited resilience in the affected nonnative populations. Only one of the six affected sites fully recovered, whereas the other five sites showed no recovery in Mayan cichlid numbers. The recovered site was closest to a canal, known to act as thermal refuges for nonnative fishes. In summary, cold spells can reduce nonnative abundances, but whether cold spells can effectively knock back invasions (and range expansions) by tropical/subtropical nonnative species will depend on how the frequency and severity of cold spells are affected by climate change. We propose that these mortality-causing extreme events could provide rare management opportunities late in an invasion

    Relativistic Effects in the Electromagnetic Current at GeV Energies

    Get PDF
    We employ a recent approach to the non-relativistic reduction of the electromagnetic current operator in calculations of electronuclear reactions. In contrast to the traditional scheme, where approximations are made for the transferred momentum, transferred energy and initial momentum of the struck nucleon in obtaining an on-shell inspired form for the current, we treat the problem exactly for the transferred energy and transferred momentum. We calculate response functions for the reaction 2H(e,ep)n^2H(e,e'p)n at CEBAF (TJNAF) energies and find large relativistic corrections. We also show that in Plane Wave Impulse Approximation, it is always possible to use the full operator, and we present a comparison of such a limiting case with the results incorporating relativistic effects to the first order in the initial momentum of the struck nucleon.Comment: 31 pages, 8 figures, Revte
    corecore